HISTORY OF VINTAGE CARS

It all began with the horse. Or the camel. Or perhaps even the dog. No-one really knows which animal prehistoric humans picked on first. People tended to stay put, living more locally than they do now. If they needed to move things about, they had to float them down rivers or drag them by sledge. All that started to change when humans realized the animals around them had raw power they could tap and tame. These "beasts of burden" were the first engines.By about 5000BCE, there were sledges and there were animal "engines"—so the obvious thing to do was hitch them together. The Native Americans were masters at this. They invented the travois: a strong, A-shaped wooden frame, sometimes covered with animal skin, that a horse could drag behind it like a cart without wheels. First used thousands of years ago, the travois was still scraping along well into the 19th century.The next big step was to add wheels and turn sledges into carts. The wheel, which first appeared around 3500 BCE, was one of the last great inventions of prehistoric times. No-one knows exactly how wheels were invented. A group of prehistoric people may have been rolling a heavy load along on tree trunks one day when they suddenly realized they could chop the logs like salami and make the slices into wheels. However it was invented, the wheel was a massive advance: it meant people and animals could pull heavier loads further and faster.Huge and heavy, the first solid wheels were difficult to carve and more square than round. When someone had the bright idea of building lighter, rounder wheels from separate wooden spokes, lumbering carts became swift, sleek chariots. The ancient Egyptians, Greeks, and Romans all used chariots to expand their empires. They were a bit like horse-drawn tanks.Earlier civilizations made small steps by trial and error. The ancient Greeks (the first real scientists) took giant leaps. Greek philosophers (thinkers) realized that a wheel mounted on an axle can magnify a pushing or pulling force. So people now understood the science of wheels for the first timeThe Greeks also gave us gears: pairs of wheels with teeth around the edge that lock and turn together to increase power or speed.Carts and chariots were a big advance on legs—but they were useless for going cross country. That's why ancient Middle Eastern people and Mediterraneans, who lived in open grassy areas and deserts, developed chariots faster than Europeans and Asians stuck among the forests and scrub. The Romans were the first to realize that a car is only as good as the road it travels on. So they linked up their empire with a huge highway network. Roman roads were cutting-edge technology. They had a soft base underneath to drain away water and a harder top made from a patchwork of tight-fitting rocks.The Greeks gave us gears, the Romans gave us roads—but when it came to engines, the world was still stuck with horsepower. And things stayed that way for hundreds of years through a time known as the Dark Ages, the early part of the Middle Ages, when science and knowledge advanced little in the western worldThings finally started getting interesting again toward the end of the Middle Ages. In 1335, Dutchman Guido von Vigevano drew sketches of a "Windwagen". It had the three key parts of a modern car: an engine (spinning windmill sails), a set of wheels, and gears to transfer power between them. During the Renaissance (the explosion of culture and science that began in the 15th century), Italian inventor Leonardo da Vinci (1452–1519) scribbled some designs for a clockwork car. Like a giant watch, it was supposed to be powered by springs that would drive the wheels through a system of interlocking gears. Even though there was little mileage in either of these ideas, the self-powered car was slowly coming together and the days of the horse seemed numbered.Things finally started getting interesting again toward the end of the Middle Ages. In 1335, Dutchman Guido von Vigevano drew sketches of a "Windwagen". It had the three key parts of a modern car: an engine (spinning windmill sails), a set of wheels, and gears to transfer power between them. During the Renaissance (the explosion of culture and science that began in the 15th century), Italian inventor Leonardo da Vinci (1452–1519) scribbled some designs for a clockwork car. Like a giant watch, it was supposed to be powered by springs that would drive the wheels through a system of interlocking gears. Even though there was little mileage in either of these ideas, the self-powered car was slowly coming together and the days of the horse seemed numbered.Every so often, steam from a boiler (a sort of gigantic coal-fired kettle) squirted into the space in the cylinder underneath the piston. Then cold water was squirted in to make the steam condense, creating a partial vacuum directly under the piston. Since the air pressure in the space above the piston was now greater than that in the space beneath it, the piston moved down. When the vacuum was released, the piston rose back up again. The rising and falling piston operated a pump that slowly sucked the water from the mine.Machines like this were originally called fire engines—they were, after all, powered by burning coal—though they soon became known as steam engines when people realized that controlling steam was the key to making them work more efficiently. One of those people was a Scotsman named James Watt (1736–1819). In 1764, Watt redesigned Newcomen's engine so it was both a fraction the size and more powerful. Where Newcomen's piston had simply tipped a beam up and down, Watt's turned wheels and gears. Large Watt engines soon found their way into factories, where they became the powerhouse of the Industrial Revolution and people did away with horses for operating pumps and other machines. Coal seemed to be the fuel of the future.Machines like this were originally called fire engines—they were, after all, powered by burning coal—though they soon became known as steam engines when people realized that controlling steam was the key to making them work more efficiently. One of those people was a Scotsman named James Watt (1736–1819). In 1764, Watt redesigned Newcomen's engine so it was both a fraction the size and more powerful. Where Newcomen's piston had simply tipped a beam up and down, Watt's turned wheels and gears. Large Watt engines soon found their way into factories, where they became the powerhouse of the Industrial Revolution and people did away with horses for operating pumps and other machines. Coal seemed to be the fuel of the futureSteam engines were soon finding their way into other heavy vehicles. In the early 1800s, Cornishman Richard Trevithick (1771–1833) started building steam carriages with wobbly 3-m (10-ft) diameter wheels. Around this time, Trevithick's American counterpart Oliver Evans (1755–1819) built an ambitious steam-powered river digger called the Oruktor Amphibolos that could drive on either land or water. Belching fire and smoke like a dragon, it caused a sensation as it chugged down the Philadelphia streets in 1804..Both Trevithick and Evans ultimately switched their attention to making steam trains, but another Cornish inventor, Goldsworthy Gurney (1793–1875), was convinced the idea of steam road vehicles still had legs. Quite literally. He designed an early steam carriage that would gallop along on rickety pins, just like a horse. When Gurney realized wheels could do the job much better, he built impressive steam buses and ran a service between London and Bath. Ultimately he was driven out of business by horse-powered stage coaches, which were faster and cheaper. John Scott Russell (1808–1882) also had to close a promising steam-coach business when one of his buses exploded on 29 July 1834, killing four passengers. It was the world's first fatal car accident. Horses everywhere breathed a huge sigh of relief:A car is like a cart with a built-in horse—a horse-less carriage that doesn't eat grass, wear shoes, or leave a steaming pile of muck wherever it goes. The engineers who set out to make the first cars had a big problem on their hands: how to squeeze the power of a galloping horse into a small, reliable engine.This tricky problem taxed the best minds of the day. The experiments with steam had been the first attempt to solve it, but though coal-powered steam engines were excellent for pulling trains, they weren't so good in cars. Apart from the clunking great engine itself, you had to carry a mini-mountain of coal and a tank full of water. Some ingenious Europeans starting searching for better fuels and more compact engines. They were a mixture of "thinkers" and "doers".The engineers were inspired by brilliant Dutch scientist Christiaan Huygens (1629–1695), who had the laser-like mind of Isaac Newton and the inventing ability of Leonardo da Vinci. He made many astronomical discoveries, invented the mathematics of probability, made the first pendulum clock, invented a musical keyboard, and discovered that light travels like a wave. In the late 17th century, Huygens had an idea for an engine that made power by exploding gunpowder in a tube. Unfortunately, he was way ahead of his time: engineering wasn't yet good enough for him actually to build this machine. If it had been, the world might have had cars almost 200 years earlier!Next up was a French army engineer called Nicolas Leonard Sadi Carnot (1796–1832), who wrote the original book of car science, Reflections on the Motive Power of Fire, in 1824. It was the first proper explanation of how engines worked, why they made power, and how you could make them even more effective. Carnot's ideas are now considered brilliant, but they were published over 100 years after the first steam engines had already been built. What was use was science when it came a century after the inventions it tried to explain?Huygens' idea to capture the power of a small explosion was what the "doers" seized on. A French-Belgian engineer called Joseph Étienne Lenoir (1822–1900) was tinkering with electricity in the 1850s when he took the next step. In those days, street lamps were naked flames fed by gas pipes. Lenoir wondered what would happen if he could ignite some of this street-lamp gas in a metal tin using an electric spark. His "spark plug" (as we now call it) would make the gas explode with a thump of power that could push a piston. If he could repeat this process again and again, he could drive a machine. The "gas engines" Lenoir built made as much power as 1.5 horses and were soon being built by the dozen. In 1863, Lenoir fixed one of them to a three-wheeled cart and built a very crude car. It made an 18-km (9-mile) journey in 11 hours—four times longer than it would have taken to walk.Lenoir died a miserable pauper because his engines, though revolutionary, were soon obsolete. Gas was a cleaner fuel than coal, but it wasn't practical—there was even a risk it would explode and kill people. Gasoline (a liquid fuel) proved to be a better bet, as German Nikolaus Otto (1832–1891) discovered. Otto was no scientific thinker—far from it: he was a traveling grocery salesman who taught himself engineering. During the 1860s, he tinkered with various engine designs and, in 1876, finally came up with a really efficient gasoline engine, which worked by methodically repeating the same four steps (or "strokes") over and over again. Virtually every car engine has worked the same way ever since.German engineer Karl Benz (1844–1929) studied Otto's work and determined to do better. After building a simpler gasoline engine of his own, he fixed it to a three-wheeled carriage and made the world's first practical gas-powered car in 1885. No-one took much notice—until Benz's feisty wife Bertha and their two young sons "borrowed" the car one day without asking and set off for a 100-km (65-mile) journey to see grandma. They bought fuel at drug stores (chemist's shops), because gas stations had yet to be invented, and the boys had to get out every so often to push the car up hills. Bertha even had to stop a couple of times to make repairs with her hair pin and garter belt. News of this intrepid early test-drive caught the public's imagination; Benz couldn't have dreamed up a better publicity stunt if he'd tried. He took his wife's advice and added gears for uphill driving. Soon he was developing successful four-wheel cars and, by the start of the 20th century, was the world's leading car maker.Benz soon found himself up against Gottlieb Daimler (1834–1900) and Wilhelm Maybach (1846–1929), who worked for Nikolaus Otto, until Otto and Daimler fell out. Setting up their own firm, Daimler and Maybach experimented with a giant gasoline engine nicknamed the Grandfather Clock (because it was tall and upright). After shrinking it down to size, they bolted it to a wooden bicycle and made the world's first motorbike. By 1889, they were building cars. Ten years later, the Daimler company named a car "Mercedes" in honor of Mercedes Jellinek, the daughter of one of their customers and dealers, Emil Jellinek (1853–1918). The Daimler and Benz companies were rivals until the 1920s, when they merged to make Daimler-Benz and began selling cars under the name Mercedes-Benz.Rudolf Diesel (1858–1913) was both a thinker and a doer. Confined to hospital after an accident, he spent months poring over books and papers by people like Carnot and Otto. He soon came to the conclusion that he could build a far better engine than the puny gasoline machines Benz and Daimler had designed and knocked up a prototype, an enormous 3-m (10-ft) high machine, in the early 1890s. This first diesel engine made twice as much power as a similar steam engine and, even more remarkably, could run on practically any fuel at all—even oil made from peanuts and vegetables. Diesel, in other words, was a pioneer of biofuels long before people had a name for themDiesel was convinced of his genius and certain his engine would change the world, but he never lived to see the success he'd earned. In September 1913, while traveling from Germany to England on the mail ship SS Dresden, he fell overboard and drowned. Some people think he was murdered by German or French secret agents to stop him selling the secrets of his engines to the English in the run up to World War I, which broke out the following year.While inventors like Diesel were developing engines in a careful scientific way, a hapless American called Charles Goodyear (1800–1860) found the secret of making car tires completely by accident. After learning about rubber, he convinced himself he could make his fortune by turning it into useful objects like waterproof shoes. All attempts ended in disaster and his life became a catalog of misery and misfortune. His shoes melted in the summer heat, six of his 12 children died in infancy, and his family had to live in grinding poverty eating fish from the river. But Goodyear was determined. When debts landed him in jail, he simply asked his wife to bring him a rolling pin and some rubber and he carried on inventing in his cell. He finally made his big breakthrough when he accidentally dropped a piece of rubber on a hot stove. It cooked and shriveled into a hard black mass that Goodyear immediately spotted as the thing he'd wanted all along. This is how he developed the tough black rubber we use in tires today by a cooking process now known as vulcanization.By the start of the 20th century, gasoline-engined cars were fast, reliable, and exciting. They were also stupidly expensive. In 1893, Karl Benz's simple, Viktoria car had a price tag of £9000 (about £50,000 today) and hardly anyone could afford one—he sold just 45. Car makers stuck with big, expensive cars, so customers stuck with their horses and carts. Then a bold American engineer called Henry Ford (1863–1947) came along and decided things had to be different.Ford was no scientist, but he'd been repairing watches and tinkering with machines since he was a boy. Never afraid of rolling up his sleeves, he loved machinery and understood it instinctively. His first car was little more than a four-wheel motorbike that he called the Quadricycle. When he took it on the streets of Detroit in 1896, horses bolted in all directions.Ford must have been delighted: he had no time for horses. Aged 14, he'd been thrown from the saddle of a colt, caught his foot in the stirrups, and dragged home along the ground. A few years later, he'd been seriously injured when his bolting horse and cart tried to smash through a fence. Now was the time to settle those scores.Ford loved machines and hated horses, so he hatched a simple plan: he'd make the simplest possible "horseless carriage" and he'd make it in such enormous quantities, in only one color, that he could sell it cheaply to a huge number of people. It took him 12 years to get things right. In fact, he made eight different models (named A, B, C, F, N, R, S, and K) before he finally came up with a winner, the Model T, launched in 1908—a car everyone could afford. Around 15 million Model T Fords were eventually sold and a delighted (and very rich) Henry Ford scribbled in his notebook: "The horse is DONE